In this chapter, look for the answers to these questions:

- What factors affect buyers’ demand for goods?
- What factors affect sellers’ supply of goods?
- How do supply and demand determine the price of a good and the quantity sold?
- How do changes in the factors that affect demand or supply affect the market price and quantity of a good?
- How do markets allocate resources?
Markets and Competition

- A **market** is a group of buyers and sellers of a particular product.

- A **competitive market** is one with many buyers and sellers, each has a negligible effect on price.

- In a **perfectly competitive** market:
 - All goods exactly the same
 - Buyers & sellers so numerous that no one can affect market price – each is a “price taker”

- In this chapter, we assume markets are perfectly competitive.
Demand

- The **quantity demanded** of any good is the amount of the good that buyers are willing and able to purchase.

- **Law of demand**: the claim that the quantity demanded of a good falls when the price of the good rises, other things equal.
The Demand Schedule

- **Demand schedule**: a table that shows the relationship between the price of a good and the quantity demanded

- **Example**: Helen’s demand for lattes.

<table>
<thead>
<tr>
<th>Price of lattes</th>
<th>Quantity of lattes demanded</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
<td>16</td>
</tr>
<tr>
<td>1.00</td>
<td>14</td>
</tr>
<tr>
<td>2.00</td>
<td>12</td>
</tr>
<tr>
<td>3.00</td>
<td>10</td>
</tr>
<tr>
<td>4.00</td>
<td>8</td>
</tr>
<tr>
<td>5.00</td>
<td>6</td>
</tr>
<tr>
<td>6.00</td>
<td>4</td>
</tr>
</tbody>
</table>

- Notice that Helen’s preferences obey the Law of Demand.
Helen’s Demand Schedule & Curve

<table>
<thead>
<tr>
<th>Price of Lattes</th>
<th>Quantity of Lattes Demanded</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
<td>16</td>
</tr>
<tr>
<td>$1.00</td>
<td>14</td>
</tr>
<tr>
<td>$2.00</td>
<td>12</td>
</tr>
<tr>
<td>$3.00</td>
<td>10</td>
</tr>
<tr>
<td>$4.00</td>
<td>8</td>
</tr>
<tr>
<td>$5.00</td>
<td>6</td>
</tr>
<tr>
<td>$6.00</td>
<td>4</td>
</tr>
</tbody>
</table>
Market Demand versus Individual Demand

- The quantity demanded in the market is the sum of the quantities demanded by all buyers at each price.

- Suppose Helen and Ken are the only two buyers in the Latte market. \((Q^d = \text{quantity demanded})\)

<table>
<thead>
<tr>
<th>Price</th>
<th>Helen’s (Q^d)</th>
<th>Ken’s (Q^d)</th>
<th>Market (Q^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
<td>16</td>
<td>+</td>
<td>24</td>
</tr>
<tr>
<td>1.00</td>
<td>14</td>
<td>+</td>
<td>21</td>
</tr>
<tr>
<td>2.00</td>
<td>12</td>
<td>+</td>
<td>18</td>
</tr>
<tr>
<td>3.00</td>
<td>10</td>
<td>+</td>
<td>15</td>
</tr>
<tr>
<td>4.00</td>
<td>8</td>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>5.00</td>
<td>6</td>
<td>+</td>
<td>9</td>
</tr>
<tr>
<td>6.00</td>
<td>4</td>
<td>+</td>
<td>6</td>
</tr>
</tbody>
</table>
The Market Demand Curve for Lattes

<table>
<thead>
<tr>
<th>P</th>
<th>Q^d (Market)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>24</td>
</tr>
<tr>
<td>1.00</td>
<td>21</td>
</tr>
<tr>
<td>2.00</td>
<td>18</td>
</tr>
<tr>
<td>3.00</td>
<td>15</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
</tr>
<tr>
<td>5.00</td>
<td>9</td>
</tr>
<tr>
<td>6.00</td>
<td>6</td>
</tr>
</tbody>
</table>
Demand Curve Shifters

- The demand curve shows how price affects quantity demanded, *other things being equal*.

- These “other things” are non-price determinants of demand (*i.e.*, things that determine buyers’ demand for a good, other than the good’s price).

- Changes in them shift the D curve…
Demand Curve Shifters: # of Buyers

- Increase in # of buyers increases quantity demanded at each price, shifts D curve to the right.
Suppose the number of buyers increases. Then, at each P, Q^d will increase (by 5 in this example).
Demand Curve Shifters: Income

- Demand for a **normal good** is positively related to income.
 - Increase in income causes increase in quantity demanded at each price, shifts D curve to the right.

(Demand for an **inferior good** is negatively related to income. An increase in income shifts D curves for inferior goods to the left.)
Demand Curve Shifters: Prices of Related Goods

- Two goods are **substitutes** if an increase in the price of one causes an increase in demand for the other.

- Example: pizza and hamburgers. An increase in the price of pizza increases demand for hamburgers, shifting hamburger demand curve to the right.

- Other examples: Coke and Pepsi, laptops and desktop computers, CDs and music downloads
Demand Curve Shifters: Prices of Related Goods

- Two goods are **complements** if an increase in the price of one causes a fall in demand for the other.

- Example: computers and software. If price of computers rises, people buy fewer computers, and therefore less software. Software demand demand curve shifts left.

- Other examples: college tuition and textbooks, bagels and cream cheese, eggs and bacon
Demand Curve Shifters: Tastes

- Anything that causes a shift in tastes *toward* a good will increase demand for that good and shift its D curve to the right.

- Example:
The Atkins diet became popular in the ’90s, caused an increase in demand for eggs, shifted the egg demand curve to the right.
Demand Curve Shifters: Expectations

- Expectations affect consumers’ buying decisions.
- Examples:
 - If people expect their incomes to rise, their demand for meals at expensive restaurants may increase now.
 - If the economy sours and people worry about their future job security, demand for new autos may fall now.
Summary: Variables That Influence Buyers

<table>
<thead>
<tr>
<th>Variable</th>
<th>A change in this variable…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>…causes a movement along the D curve</td>
</tr>
<tr>
<td># of buyers</td>
<td>…shifts the D curve</td>
</tr>
<tr>
<td>Income</td>
<td>…shifts the D curve</td>
</tr>
<tr>
<td>Price of related goods</td>
<td>…shifts the D curve</td>
</tr>
<tr>
<td>Tastes</td>
<td>…shifts the D curve</td>
</tr>
<tr>
<td>Expectations</td>
<td>…shifts the D curve</td>
</tr>
</tbody>
</table>
Demand Curve

Draw a demand curve for music downloads. What happens to it in each of the following scenarios? Why?

A. The price of iPods falls
B. The price of music downloads falls
C. The price of CDs falls
A. Price of iPods falls

Music downloads and iPods are complements. A fall in price of iPods shifts the demand curve for music downloads to the right.
B. Price of music downloads falls

The \(D \) curve does not shift.
Move down along curve to a point with lower \(P \), higher \(Q \).
C. Price of CDs falls

CDs and music downloads are substitutes. A fall in price of CDs shifts demand for music downloads to the left.
Supply

- The **quantity supplied** of any good is the amount that sellers are willing and able to sell.
- **Law of supply**: the claim that the quantity supplied of a good rises when the price of the good rises, other things equal.
The Supply Schedule

- **Supply schedule**: A table that shows the relationship between the price of a good and the quantity supplied.

- **Example**: Starbucks’ supply of lattes.

- Notice that Starbucks’ supply schedule obeys the Law of Supply.

<table>
<thead>
<tr>
<th>Price of lattes</th>
<th>Quantity of lattes supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>3</td>
</tr>
<tr>
<td>2.00</td>
<td>6</td>
</tr>
<tr>
<td>3.00</td>
<td>9</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
</tr>
<tr>
<td>5.00</td>
<td>15</td>
</tr>
<tr>
<td>6.00</td>
<td>18</td>
</tr>
</tbody>
</table>
Starbucks' Supply Schedule & Curve

<table>
<thead>
<tr>
<th>Price of lattes</th>
<th>Quantity of lattes supplied</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>3</td>
</tr>
<tr>
<td>2.00</td>
<td>6</td>
</tr>
<tr>
<td>3.00</td>
<td>9</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
</tr>
<tr>
<td>5.00</td>
<td>15</td>
</tr>
<tr>
<td>6.00</td>
<td>18</td>
</tr>
</tbody>
</table>
Market Supply versus Individual Supply

- The quantity supplied in the market is the sum of the quantities supplied by all sellers at each price.
- Suppose Starbucks and Jitters are the only two sellers in this market. \(Q_s = \text{quantity supplied} \)

<table>
<thead>
<tr>
<th>Price</th>
<th>Starbucks</th>
<th>Jitters</th>
<th>Market (Q_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.00</td>
<td>0</td>
<td>+ 0</td>
<td>= 0</td>
</tr>
<tr>
<td>1.00</td>
<td>3</td>
<td>+ 2</td>
<td>= 5</td>
</tr>
<tr>
<td>2.00</td>
<td>6</td>
<td>+ 4</td>
<td>= 10</td>
</tr>
<tr>
<td>3.00</td>
<td>9</td>
<td>+ 6</td>
<td>= 15</td>
</tr>
<tr>
<td>4.00</td>
<td>12</td>
<td>+ 8</td>
<td>= 20</td>
</tr>
<tr>
<td>5.00</td>
<td>15</td>
<td>+ 10</td>
<td>= 25</td>
</tr>
<tr>
<td>6.00</td>
<td>18</td>
<td>+ 12</td>
<td>= 30</td>
</tr>
</tbody>
</table>
The Market Supply Curve

<table>
<thead>
<tr>
<th>P (Price)</th>
<th>Q^S (Quantity Supplied)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>1.00</td>
<td>5</td>
</tr>
<tr>
<td>2.00</td>
<td>10</td>
</tr>
<tr>
<td>3.00</td>
<td>15</td>
</tr>
<tr>
<td>4.00</td>
<td>20</td>
</tr>
<tr>
<td>5.00</td>
<td>25</td>
</tr>
<tr>
<td>6.00</td>
<td>30</td>
</tr>
</tbody>
</table>

The graph shows the market supply curve with points at:
- 1.00 at 5 units
- 2.00 at 10 units
- 3.00 at 15 units
- 4.00 at 20 units
- 5.00 at 25 units
- 6.00 at 30 units

This illustrates the relationship between price and quantity supplied in the market.
Supply Curve Shifters

- The supply curve shows how price affects quantity supplied, *other things being equal.*
- These “other things” are non-price determinants of supply.
- Changes in them shift the S curve…
Supply Curve Shifters: Input Prices

- Examples of input prices: wages, prices of raw materials.

- A fall in input prices makes production more profitable at each output price, so firms supply a larger quantity at each price, and the S curve shifts to the right.
Suppose the price of milk falls. At each price, the quantity of Lattes supplied will increase (by 5 in this example).
Supply Curve Shifters: Technology

- Technology determines how much inputs are required to produce a unit of output.
- A cost-saving technological improvement has the same effect as a fall in input prices, shifts the supply curve to the right.
Supply Curve Shifters: # of Sellers

- An increase in the number of sellers increases the quantity supplied at each price, shifts S curve to the right.
Supply Curve Shifters: Expectations

Example:

- Events in the Middle East lead to expectations of higher oil prices.
- In response, owners of Texas oilfields reduce supply now, save some inventory to sell later at the higher price.
- S curve shifts left.

In general, sellers may adjust supply* when their expectations of future prices change.

(*If good not perishable)
Summary: Variables that Influence Sellers

<table>
<thead>
<tr>
<th>Variable</th>
<th>A change in this variable…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>…causes a movement along the S curve</td>
</tr>
<tr>
<td>Input Prices</td>
<td>…shifts the S curve</td>
</tr>
<tr>
<td>Technology</td>
<td>…shifts the S curve</td>
</tr>
<tr>
<td># of Sellers</td>
<td>…shifts the S curve</td>
</tr>
<tr>
<td>Expectations</td>
<td>…shifts the S curve</td>
</tr>
</tbody>
</table>
Draw a supply curve for tax return preparation software. What happens to it in each of the following scenarios?

A. Retailers cut the price of the software.

B. A technological advance allows the software to be produced at lower cost.

C. Professional tax return preparers raise the price of the services they provide.
A. Fall in price of tax return software

S curve does not shift.

Move down along the curve to a lower P and lower Q.

Price of tax return software

<table>
<thead>
<tr>
<th>P_1</th>
<th>Q_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2</td>
<td>Q_2</td>
</tr>
</tbody>
</table>
B. Fall in cost of producing the software

S curve shifts to the right: at each price, Q increases.
C. Professional preparers raise their price

This shifts the demand curve for tax preparation software, not the supply curve.

![Diagram](image.png)
Supply and Demand Together

Equilibrium: P has reached the level where quantity supplied equals quantity demanded.
Equilibrium price:
the price that equates quantity supplied with quantity demanded

<table>
<thead>
<tr>
<th>P</th>
<th>Q^D</th>
<th>Q^S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>30</td>
</tr>
</tbody>
</table>
Equilibrium quantity:

the quantity supplied and quantity demanded at the equilibrium price

\[
\begin{array}{|c|c|c|}
\hline
P & Q^D & Q^S \\
\hline
$0 & 24 & 0 \\
1 & 21 & 5 \\
2 & 18 & 10 \\
3 & 15 & 15 \\
4 & 12 & 20 \\
5 & 9 & 25 \\
6 & 6 & 30 \\
\hline
\end{array}
\]
Surplus (a.k.a. excess supply): when quantity supplied is greater than quantity demanded

Example:
If $P = $5,
then
$Q^D = 9$ lattes
and
$Q^S = 25$ lattes
resulting in a surplus of 16 lattes
Surplus (a.k.a. excess supply): when quantity supplied is greater than quantity demanded

Facing a surplus, sellers try to increase sales by cutting price. This causes Q^D to rise and Q^S to fall… …which reduces the surplus.
Surplus (a.k.a. excess supply): when quantity supplied is greater than quantity demanded

Facing a surplus, sellers try to increase sales by cutting price. This causes Q_D to rise and Q_S to fall. Prices continue to fall until market reaches equilibrium.
Shortage (a.k.a. excess demand): when quantity demanded is greater than quantity supplied

Example:
If \(P = \$1 \), then
\[Q^D = 21 \text{ lattes} \]
and
\[Q^S = 5 \text{ lattes} \]
resulting in a shortage of 16 lattes
Shortage (a.k.a. excess demand): when quantity demanded is greater than quantity supplied

Facing a shortage, sellers raise the price, causing Q^D to fall and Q^S to rise, ...which reduces the shortage.
Shortage (a.k.a. excess demand): when quantity demanded is greater than quantity supplied.

Facing a shortage, sellers raise the price, causing Q^D to fall and Q^S to rise.

Prices continue to rise until market reaches equilibrium.
Three Steps to Analyzing Changes in Eq’m

To determine the effects of any event,

1. Decide whether event shifts S curve, D curve, or both.

2. Decide in which direction curve shifts.

3. Use supply-demand diagram to see how the shift changes eq’m P and Q.
EXAMPLE: The Market for Hybrid Cars

- **Price of Hybrid Cars**: The price of hybrid cars is denoted by P.
- **Quantity of Hybrid Cars**: The quantity of hybrid cars is denoted by Q.

The diagram illustrates the supply (S_1) and demand (D_1) curves for hybrid cars. The equilibrium price is P_1, and the equilibrium quantity is Q_1. The supply and demand curves intersect at the equilibrium point, indicating the market price and quantity for hybrid cars.
EXAMPLE 1: A Shift in Demand

EVENT TO BE ANALYZED:
Increase in price of gas.

STEP 1:
D curve shifts

STEP 2:
D shifts right

STEP 3:
The shift causes an increase in price and quantity of hybrid cars.
EXAMPLE 1: A Shift in Demand

Notice:
When P rises, producers supply a larger quantity of hybrids, even though the S curve has not shifted.

Always be careful to distinguish b/w a shift in a curve and a movement along the curve.
Terms for Shift vs. Movement Along Curve

- **Change in supply:** a shift in the S curve occurs when a non-price determinant of supply changes (like technology or costs)

- **Change in the quantity supplied:** a movement along a fixed S curve occurs when P changes

- **Change in demand:** a shift in the D curve occurs when a non-price determinant of demand changes (like income or # of buyers)

- **Change in the quantity demanded:** a movement along a fixed D curve occurs when P changes
EXAMPLE 2: A Shift in Supply

EVENT: New technology reduces cost of producing hybrid cars.

STEP 1: S curve shifts

STEP 2: S shifts right

STEP 3: The shift causes price to fall and quantity to rise.
EXAMPLE 3: A Shift in Both Supply and Demand

EVENTS:
price of gas rises AND new technology reduces production costs

STEP 1:
Both curves shift.

STEP 2:
Both shift to the right.

STEP 3:
Q rises, but effect on P is ambiguous:
If demand increases more than supply, P rises.
EXAMPLE 3: A Shift in Both Supply and Demand

EVENTS:
price of gas rises AND new technology reduces production costs

STEP 3, cont.
But if supply increases more than demand, \(P \) falls.
ACTIVE LEARNING 3
Shifts in supply and demand

Use the three-step method to analyze the effects of each event on the equilibrium price and quantity of music downloads.

Event A: A fall in the price of CDs

Event B: Sellers of music downloads negotiate a reduction in the royalties they must pay for each song they sell.

Event C: Events A and B both occur.
A. Fall in price of CDs

STEPS

1. D curve shifts

2. D shifts left

3. P and Q both fall.

The market for music downloads
B. Fall in cost of royalties

STEPS

1. **S** curve shifts
 (Royalties are part of sellers' costs)
2. **S** shifts right
3. **P** falls, **Q** rises.

The market for music downloads
C. Fall in price of CDs and fall in cost of royalties

STEPS

1. Both curves shift (see parts A & B).
2. D shifts left, S shifts right.
3. P unambiguously falls.
 Effect on Q is ambiguous:
 The fall in demand reduces Q,
 the increase in supply increases Q.
CONCLUSION: How Prices Allocate Resources

- One of the Ten Principles from Chapter 1: Markets are usually a good way to organize economic activity.

- In market economies, prices adjust to balance supply and demand. These equilibrium prices are the signals that guide economic decisions and thereby allocate scarce resources.
CHAPTER SUMMARY

- A competitive market has many buyers and sellers, each of whom has little or no influence on the market price.
- Economists use the supply and demand model to analyze competitive markets.
- The downward-sloping demand curve reflects the Law of Demand, which states that the quantity buyers demand of a good depends negatively on the good’s price.
CHAPTER SUMMARY

- Besides price, demand depends on buyers’ incomes, tastes, expectations, the prices of substitutes and complements, and number of buyers. If one of these factors changes, the D curve shifts.

- The upward-sloping supply curve reflects the Law of Supply, which states that the quantity sellers supply depends positively on the good’s price.

- Other determinants of supply include input prices, technology, expectations, and the # of sellers. Changes in these factors shift the S curve.
CHAPTER SUMMARY

- The intersection of S and D curves determines the market equilibrium. At the equilibrium price, quantity supplied equals quantity demanded.

- If the market price is above equilibrium, a surplus results, which causes the price to fall. If the market price is below equilibrium, a shortage results, causing the price to rise.
We can use the supply-demand diagram to analyze the effects of any event on a market: First, determine whether the event shifts one or both curves. Second, determine the direction of the shifts. Third, compare the new equilibrium to the initial one.

In market economies, prices are the signals that guide economic decisions and allocate scarce resources.